lamindb.Schema¶
- class lamindb.Schema(features: Iterable[Record] | None = None, components: dict[str, Schema] | None = None, name: str | None = None, description: str | None = None, dtype: str | None = None, itype: str | Registry | FieldAttr | None = None, type: Schema | None = None, is_type: bool = False, otype: str | None = None, minimal_set: bool = True, ordered_set: bool = False, maximal_set: bool = False, slot: str | None = None, coerce_dtype: bool = False)¶
Bases:
Record
,CanCurate
,TracksRun
Schemas.
The simplest schema is a feature set such as the set of columns of a
DataFrame
.A composite schema has multiple components, e.g., for an
AnnData
, one schema forobs
and another one forvar
.- Parameters:
features –
Iterable[Record] | None = None
An iterable ofFeature
records to hash, e.g.,[Feature(...), Feature(...)]
. Is turned into a set upon instantiation. If you’d like to pass values, usefrom_values()
orfrom_df()
.components –
dict[str, Schema] | None = None
A dictionary mapping component names to their correspondingSchema
objects for composite schemas.name –
str | None = None
A name.description –
str | None = None
A description.dtype –
str | None = None
The simple type. Defaults toNone
for sets ofFeature
records. Otherwise defaults to"num"
(e.g., for sets ofGene
).itype –
str | None = None
The feature identifier type (e.g.Feature
,Gene
, …).type –
Schema | None = None
A type.is_type –
bool = False
Distinguish types from instances of the type.otype –
str | None = None
An object type to define the structure of a composite schema.minimal_set –
bool = True
Whether the schema contains a minimal set of linked features.ordered_set –
bool = False
Whether features are required to be ordered.maximal_set –
bool = False
IfTrue
, no additional features are allowed.slot –
str | None = None
The slot name when this schema is used as a component in a composite schema.coerce_dtype –
bool = False
When True, attempts to coerce values to the specified dtype during validation, seecoerce_dtype
.
Why does LaminDB model schemas, not just features?
Performance: Imagine you measure the same panel of 20k transcripts in 1M samples. By modeling the panel as a feature set, you can link all your artifacts against one feature set and only need to store 1M instead of 1M x 20k = 20B links.
Interpretation: Model protein panels, gene panels, etc.
Data integration: Feature sets provide the information that determines whether two datasets can be meaningfully concatenated.
These reasons do not hold for label sets. Hence, LaminDB does not model label sets.
Note
A feature set can be identified by the
hash
of its feature uids. It’s stored in the.hash
field.A
slot
provides a string key to access feature sets. For instance, for the schema of anAnnData
object, it would be'obs'
foradata.obs
.See also
from_values()
Create from values.
from_df()
Create from dataframe columns.
Examples
Create a schema (feature set) from df with types:
>>> df = pd.DataFrame({"feat1": [1, 2], "feat2": [3.1, 4.2], "feat3": ["cond1", "cond2"]}) >>> schema = ln.Schema.from_df(df)
Create a schema (feature set) from features:
>>> features = [ln.Feature(name=feat, dtype="float").save() for feat in ["feat1", "feat2"]] >>> schema = ln.Schema(features)
Create a schema (feature set) from identifier values:
>>> import bionty as bt >>> schema = ln.Schema.from_values(adata.var["ensemble_id"], Gene.ensembl_gene_id, organism="mouse").save()
Attributes¶
- property coerce_dtype: bool¶
Whether dtypes should be coerced during validation.
For example, a
objects
-dtyped pandas column can be coerced tocategorical
and would pass validation if this is true.
- property slots: dict[str, Schema]¶
Slots.
Examples:
# define composite schema anndata_schema = ln.Schema( name="small_dataset1_anndata_schema", otype="AnnData", components={"obs": obs_schema, "var": var_schema}, ).save() # access slots anndata_schema.slots # {'obs': <Schema: obs_schema>, 'var': <Schema: var_schema>}
Simple fields¶
- uid: str¶
A universal id (hash of the set of feature values).
- name: str | None¶
A name.
- description: str | None¶
A description.
- n¶
Number of features in the set.
- dtype: str | None¶
Data type, e.g., “num”, “float”, “int”. Is
None
forFeature
.For
Feature
, types are expected to be heterogeneous and defined on a per-feature level.
- itype: str | None¶
A registry that stores feature identifiers used in this schema, e.g.,
'Feature'
or'bionty.Gene'
.Depending on the registry,
.members
stores, e.g.,Feature
orbionty.Gene
records.Changed in version 1.0.0: Was called
registry
before.
- is_type: bool¶
Distinguish types from instances of the type.
- otype: str | None¶
Default Python object type, e.g., DataFrame, AnnData.
- hash: str | None¶
A hash of the set of feature identifiers.
For a composite schema, the hash of hashes.
- minimal_set: bool¶
Whether the schema contains a minimal set of linked features (default
True
).If
False
, no features are linked to this schema.If
True
, features are linked and considered as a minimally required set in validation.
- ordered_set: bool¶
Whether features are required to be ordered (default
False
).
- maximal_set: bool¶
If
False
, additional features are allowed (defaultFalse
).If
True
, the the minimal set is a maximal set and no additional features are allowed.
- slot: str | None¶
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is executed.
- created_at: datetime¶
Time of creation of record.
Relational fields¶
-
type:
Schema
| None¶ Type of schema.
Allows to group schemas by type, e.g., all meassurements evaluating gene expression vs. protein expression vs. multi modal.
You can define types via
ln.Schema(name="ProteinPanel", is_type=True)
.Here are a few more examples for type names:
'ExpressionPanel'
,'ProteinPanel'
,'Multimodal'
,'Metadata'
,'Embedding'
.
- params: Param¶
The params contained in the schema.
-
composites:
Schema
¶ The composite schemas that contains this schema as a component.
For example, an
AnnData
composes multiple schemas:var[DataFrameT]
,obs[DataFrame]
,obsm[Array]
,uns[dict]
, etc.
Class methods¶
- classmethod df(include=None, features=False, limit=100)¶
Convert to
pd.DataFrame
.By default, shows all direct fields, except
updated_at
.Use arguments
include
orfeature
to include other data.- Parameters:
include (
str
|list
[str
] |None
, default:None
) – Related fields to include as columns. Takes strings of form"ulabels__name"
,"cell_types__name"
, etc. or a list of such strings.features (
bool
|list
[str
], default:False
) – IfTrue
, map all features of theFeature
registry onto the resultingDataFrame
. Only available forArtifact
.limit (
int
, default:100
) – Maximum number of rows to display from a Pandas DataFrame. Defaults to 100 to reduce database load.
- Return type:
DataFrame
Examples
Include the name of the creator in the
DataFrame
:>>> ln.ULabel.df(include="created_by__name"])
Include display of features for
Artifact
:>>> df = ln.Artifact.df(features=True) >>> ln.view(df) # visualize with type annotations
Only include select features:
>>> df = ln.Artifact.df(features=["cell_type_by_expert", "cell_type_by_model"])
- classmethod filter(*queries, **expressions)¶
Query records.
- Parameters:
queries – One or multiple
Q
objects.expressions – Fields and values passed as Django query expressions.
- Return type:
- Returns:
A
QuerySet
.
See also
Guide: Query & search registries
Django documentation: Queries
Examples
>>> ln.ULabel(name="my label").save() >>> ln.ULabel.filter(name__startswith="my").df()
- classmethod from_df(df, field=FieldAttr(Feature.name), name=None, mute=False, organism=None, source=None)¶
Create schema for valid columns.
- Return type:
Schema
|None
- classmethod from_values(values, field=FieldAttr(Feature.name), type=None, name=None, mute=False, organism=None, source=None, raise_validation_error=True)¶
Create feature set for validated features.
- Parameters:
values (
list
[str
] |Series
|array
) – A list of values, like feature names or ids.field (
DeferredAttribute
, default:FieldAttr(Feature.name)
) – The field of a reference registry to map values.type (
str
|None
, default:None
) – The simple type. Defaults toNone
if reference registry isFeature
, defaults to"float"
otherwise.name (
str
|None
, default:None
) – A name.organism (
Record
|str
|None
, default:None
) – An organism to resolve gene mapping.source (
Record
|None
, default:None
) – A public ontology to resolve feature identifier mapping.raise_validation_error (
bool
, default:True
) – Whether to raise a validation error if some values are not valid.
- Raises:
ValidationError – If some values are not valid.
- Return type:
Examples
>>> features = [ln.Feature(name=feat, dtype="str").save() for feat in ["feat11", "feat21"]] >>> schema = ln.Schema.from_values(features)
>>> genes = ["ENSG00000139618", "ENSG00000198786"] >>> schema = ln.Schema.from_values(features, bt.Gene.ensembl_gene_id, "float")
- classmethod get(idlike=None, **expressions)¶
Get a single record.
- Parameters:
idlike (
int
|str
|None
, default:None
) – Either a uid stub, uid or an integer id.expressions – Fields and values passed as Django query expressions.
- Raises:
lamindb.errors.DoesNotExist – In case no matching record is found.
- Return type:
See also
Guide: Query & search registries
Django documentation: Queries
Examples:
ulabel = ln.ULabel.get("FvtpPJLJ") ulabel = ln.ULabel.get(name="my-label")
- classmethod inspect(values, field=None, *, mute=False, organism=None, source=None, strict_source=False)¶
Inspect if values are mappable to a field.
Being mappable means that an exact match exists.
- Parameters:
values (
list
[str
] |Series
|array
) – Values that will be checked against the field.field (
str
|DeferredAttribute
|None
, default:None
) – The field of values. Examples are'ontology_id'
to map against the source ID or'name'
to map against the ontologies field names.mute (
bool
, default:False
) – Whether to mute logging.organism (
str
|Record
|None
, default:None
) – An Organism name or record.source (
Record
|None
, default:None
) – Abionty.Source
record that specifies the version to inspect against.strict_source (
bool
, default:False
) – Determines the validation behavior against records in the registry. - IfFalse
, validation will include all records in the registry, ignoring the specified source. - IfTrue
, validation will only include records in the registry that are linked to the specified source. Note: this parameter won’t affect validation against public sources.
- Return type:
See also
Example:
import bionty as bt # save some gene records bt.Gene.from_values(["A1CF", "A1BG", "BRCA2"], field="symbol", organism="human").save() # inspect gene symbols gene_symbols = ["A1CF", "A1BG", "FANCD1", "FANCD20"] result = bt.Gene.inspect(gene_symbols, field=bt.Gene.symbol, organism="human") assert result.validated == ["A1CF", "A1BG"] assert result.non_validated == ["FANCD1", "FANCD20"]
- classmethod lookup(field=None, return_field=None)¶
Return an auto-complete object for a field.
- Parameters:
field (
str
|DeferredAttribute
|None
, default:None
) – The field to look up the values for. Defaults to first string field.return_field (
str
|DeferredAttribute
|None
, default:None
) – The field to return. IfNone
, returns the whole record.
- Return type:
NamedTuple
- Returns:
A
NamedTuple
of lookup information of the field values with a dictionary converter.
See also
Examples
>>> import bionty as bt >>> bt.settings.organism = "human" >>> bt.Gene.from_source(symbol="ADGB-DT").save() >>> lookup = bt.Gene.lookup() >>> lookup.adgb_dt >>> lookup_dict = lookup.dict() >>> lookup_dict['ADGB-DT'] >>> lookup_by_ensembl_id = bt.Gene.lookup(field="ensembl_gene_id") >>> genes.ensg00000002745 >>> lookup_return_symbols = bt.Gene.lookup(field="ensembl_gene_id", return_field="symbol")
- classmethod search(string, *, field=None, limit=20, case_sensitive=False)¶
Search.
- Parameters:
string (
str
) – The input string to match against the field ontology values.field (
str
|DeferredAttribute
|None
, default:None
) – The field or fields to search. Search all string fields by default.limit (
int
|None
, default:20
) – Maximum amount of top results to return.case_sensitive (
bool
, default:False
) – Whether the match is case sensitive.
- Return type:
- Returns:
A sorted
DataFrame
of search results with a score in columnscore
. Ifreturn_queryset
isTrue
.QuerySet
.
Examples
>>> ulabels = ln.ULabel.from_values(["ULabel1", "ULabel2", "ULabel3"], field="name") >>> ln.save(ulabels) >>> ln.ULabel.search("ULabel2")
- classmethod standardize(values, field=None, *, return_field=None, return_mapper=False, case_sensitive=False, mute=False, source_aware=True, keep='first', synonyms_field='synonyms', organism=None, source=None, strict_source=False)¶
Maps input synonyms to standardized names.
- Parameters:
values (
Iterable
) – Identifiers that will be standardized.field (
str
|DeferredAttribute
|None
, default:None
) – The field representing the standardized names.return_field (
str
|DeferredAttribute
|None
, default:None
) – The field to return. Defaults to field.return_mapper (
bool
, default:False
) – IfTrue
, returns{input_value: standardized_name}
.case_sensitive (
bool
, default:False
) – Whether the mapping is case sensitive.mute (
bool
, default:False
) – Whether to mute logging.source_aware (
bool
, default:True
) – Whether to standardize from public source. Defaults toTrue
for BioRecord registries.keep (
Literal
['first'
,'last'
,False
], default:'first'
) –When a synonym maps to multiple names, determines which duplicates to mark as
pd.DataFrame.duplicated
: -"first"
: returns the first mapped standardized name -"last"
: returns the last mapped standardized name -False
: returns all mapped standardized name.When
keep
isFalse
, the returned list of standardized names will contain nested lists in case of duplicates.When a field is converted into return_field, keep marks which matches to keep when multiple return_field values map to the same field value.
synonyms_field (
str
, default:'synonyms'
) – A field containing the concatenated synonyms.organism (
str
|Record
|None
, default:None
) – An Organism name or record.source (
Record
|None
, default:None
) – Abionty.Source
record that specifies the version to validate against.strict_source (
bool
, default:False
) – Determines the validation behavior against records in the registry. - IfFalse
, validation will include all records in the registry, ignoring the specified source. - IfTrue
, validation will only include records in the registry that are linked to the specified source. Note: this parameter won’t affect validation against public sources.
- Return type:
list
[str
] |dict
[str
,str
]- Returns:
If
return_mapper
isFalse
– a list of standardized names. Otherwise, a dictionary of mapped values with mappable synonyms as keys and standardized names as values.
See also
add_synonym()
Add synonyms.
remove_synonym()
Remove synonyms.
Example:
import bionty as bt # save some gene records bt.Gene.from_values(["A1CF", "A1BG", "BRCA2"], field="symbol", organism="human").save() # standardize gene synonyms gene_synonyms = ["A1CF", "A1BG", "FANCD1", "FANCD20"] bt.Gene.standardize(gene_synonyms) #> ['A1CF', 'A1BG', 'BRCA2', 'FANCD20']
- classmethod using(instance)¶
Use a non-default LaminDB instance.
- Parameters:
instance (
str
|None
) – An instance identifier of form “account_handle/instance_name”.- Return type:
Examples
>>> ln.ULabel.using("account_handle/instance_name").search("ULabel7", field="name") uid score name ULabel7 g7Hk9b2v 100.0 ULabel5 t4Jm6s0q 75.0 ULabel6 r2Xw8p1z 75.0
- classmethod validate(values, field=None, *, mute=False, organism=None, source=None, strict_source=False)¶
Validate values against existing values of a string field.
Note this is strict_source validation, only asserts exact matches.
- Parameters:
values (
list
[str
] |Series
|array
) – Values that will be validated against the field.field (
str
|DeferredAttribute
|None
, default:None
) – The field of values. Examples are'ontology_id'
to map against the source ID or'name'
to map against the ontologies field names.mute (
bool
, default:False
) – Whether to mute logging.organism (
str
|Record
|None
, default:None
) – An Organism name or record.source (
Record
|None
, default:None
) – Abionty.Source
record that specifies the version to validate against.strict_source (
bool
, default:False
) – Determines the validation behavior against records in the registry. - IfFalse
, validation will include all records in the registry, ignoring the specified source. - IfTrue
, validation will only include records in the registry that are linked to the specified source. Note: this parameter won’t affect validation against public sources.
- Return type:
ndarray
- Returns:
A vector of booleans indicating if an element is validated.
See also
Example:
import bionty as bt bt.Gene.from_values(["A1CF", "A1BG", "BRCA2"], field="symbol", organism="human").save() gene_symbols = ["A1CF", "A1BG", "FANCD1", "FANCD20"] bt.Gene.validate(gene_symbols, field=bt.Gene.symbol, organism="human") #> array([ True, True, False, False])
Methods¶
- add_synonym(synonym, force=False, save=None)¶
Add synonyms to a record.
- Parameters:
synonym (
str
|list
[str
] |Series
|array
) – The synonyms to add to the record.force (
bool
, default:False
) – Whether to add synonyms even if they are already synonyms of other records.save (
bool
|None
, default:None
) – Whether to save the record to the database.
See also
remove_synonym()
Remove synonyms.
Example:
import bionty as bt # save "T cell" record record = bt.CellType.from_source(name="T cell").save() record.synonyms #> "T-cell|T lymphocyte|T-lymphocyte" # add a synonym record.add_synonym("T cells") record.synonyms #> "T cells|T-cell|T-lymphocyte|T lymphocyte"
- async adelete(using=None, keep_parents=False)¶
- async arefresh_from_db(using=None, fields=None, from_queryset=None)¶
- async asave(*args, force_insert=False, force_update=False, using=None, update_fields=None)¶
- clean()¶
Hook for doing any extra model-wide validation after clean() has been called on every field by self.clean_fields. Any ValidationError raised by this method will not be associated with a particular field; it will have a special-case association with the field defined by NON_FIELD_ERRORS.
- clean_fields(exclude=None)¶
Clean all fields and raise a ValidationError containing a dict of all validation errors if any occur.
- date_error_message(lookup_type, field_name, unique_for)¶
- delete()¶
Delete.
- Return type:
None
- describe(return_str=False)¶
Describe schema.
- Return type:
None
|str
- get_constraints()¶
- get_deferred_fields()¶
Return a set containing names of deferred fields for this instance.
- prepare_database_save(field)¶
- refresh_from_db(using=None, fields=None, from_queryset=None)¶
Reload field values from the database.
By default, the reloading happens from the database this instance was loaded from, or by the read router if this instance wasn’t loaded from any database. The using parameter will override the default.
Fields can be used to specify which fields to reload. The fields should be an iterable of field attnames. If fields is None, then all non-deferred fields are reloaded.
When accessing deferred fields of an instance, the deferred loading of the field will call this method.
- remove_synonym(synonym)¶
Remove synonyms from a record.
- Parameters:
synonym (
str
|list
[str
] |Series
|array
) – The synonym values to remove.
See also
add_synonym()
Add synonyms
Example:
import bionty as bt # save "T cell" record record = bt.CellType.from_source(name="T cell").save() record.synonyms #> "T-cell|T lymphocyte|T-lymphocyte" # remove a synonym record.remove_synonym("T-cell") record.synonyms #> "T lymphocyte|T-lymphocyte"
- save_base(raw=False, force_insert=False, force_update=False, using=None, update_fields=None)¶
Handle the parts of saving which should be done only once per save, yet need to be done in raw saves, too. This includes some sanity checks and signal sending.
The ‘raw’ argument is telling save_base not to save any parent models and not to do any changes to the values before save. This is used by fixture loading.
- serializable_value(field_name)¶
Return the value of the field name for this instance. If the field is a foreign key, return the id value instead of the object. If there’s no Field object with this name on the model, return the model attribute’s value.
Used to serialize a field’s value (in the serializer, or form output, for example). Normally, you would just access the attribute directly and not use this method.
- set_abbr(value)¶
Set value for abbr field and add to synonyms.
- Parameters:
value (
str
) – A value for an abbreviation.
See also
Example:
import bionty as bt # save an experimental factor record scrna = bt.ExperimentalFactor.from_source(name="single-cell RNA sequencing").save() assert scrna.abbr is None assert scrna.synonyms == "single-cell RNA-seq|single-cell transcriptome sequencing|scRNA-seq|single cell RNA sequencing" # set abbreviation scrna.set_abbr("scRNA") assert scrna.abbr == "scRNA" # synonyms are updated assert scrna.synonyms == "scRNA|single-cell RNA-seq|single cell RNA sequencing|single-cell transcriptome sequencing|scRNA-seq"
- unique_error_message(model_class, unique_check)¶
- validate_constraints(exclude=None)¶
- validate_unique(exclude=None)¶
Check unique constraints on the model and raise ValidationError if any failed.